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Abstract—We present an iterative algorithm for calibrating
vector network analyzers based on orthogonal distance regression.
The algorithm features a robust, yet efficient, search algorithm, an
error analysis that includes both random and systematic errors,
a full covariance matrix relating calibration and measurement
errors, 95% coverage factors, and an easy-to-use user interface
that supports a wide variety of calibration standards. We also
discuss evidence that the algorithm outperforms the MultiCal
software package in the presence of measurement errors and
accurately estimates the uncertainty of its results.

Index Terms—Calibration, measurement, scattering parameter,
uncertainty, vector network analyzer (VNA).

I. INTRODUCTION

WE PRESENT an iterative algorithm, which we first
introduced in [1], for vector-network-analyzer (VNA)

calibration based on orthogonal distance regression. In [1], we
showed that, in the presence of random measurement errors,
this new algorithm outperforms the multiline thru-reflect-line
(TRL) VNA calibration algorithm of [2] implemented in the
National Institute of Standards and Technology’s (NIST),
Boulder, CO, popular MultiCal software package.1 We also
showed that the new algorithm accurately estimates the uncer-
tainty of its results.

Here, we will describe this new algorithm in detail, and
present many aspects of its operation not touched on in [1].
We will describe the robust search strategy employed by the
algorithm, and the wide variety of standards that the algorithm
supports (see the Appendix). We will also describe the innova-
tive strategy employed by the new algorithm to solve one-tier
calibration problems and to find the scattering parameters of
the device-under-test (DUT).

We will discuss how the algorithm estimates the uncertainty
of its results using residual deviations of the measurements from
the VNA calibration model. We will also discuss the mecha-
nism supported by the algorithm for adding systematic errors
that are not captured by the residual deviations of the measure-
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ments from the VNA calibration model into the overall uncer-
tainty estimates.

Finally, we will discuss the algorithm’s uncertainty estimates,
which we chose to express as a covariance matrix relating un-
certainties in the calibration and the measurements of the DUT.
This covariance matrix includes the correlations between all of
the measurements and all of the calibration parameters, informa-
tion that is essential for performing rigorous analyses of many
on-wafer problems in which both the probes and DUT must be
characterized from measurements.

We will discuss not only how we assemble this covariance
matrix from separate solutions of the calibration and DUT prob-
lems and from electrical models capturing the systematic errors,
but also how we determine the numbers of degrees of freedom
associated with each of these solutions, and develop appropriate
coverage factors.

II. PRIOR WORK

The iterative approaches of [3] and [4] were the first to offer
alternative solutions to closed-form VNA calibrations. The two
approaches were based, respectively, on nonlinear least-squares
solutions to the conventional VNA and six-port calibration
problems. While these iterative approaches are slower and
less compact than their closed-form counterparts, they are de-
signed for optimal performance in the presence of measure-
ment errors.

Reference [5] extended the approaches of [3] and [4] to a
16-term error model and developed error estimates. Reference
[6] applied the nonlinear least-squares approach to nonlinear
VNAs.

We later adapted the nonlinear least-squares solution of
[3] to the characterization of planar coupled transmission
lines in [7]–[10]. In this case, the least-squares solution was
obtained using the orthogonal distance regression algorithm
implemented in ODRPACK [11]. The algorithms of [7]–[10] took
advantage of the ability of ODRPACK to determine confidence
intervals for the results directly from measurement data.

In this paper, we discuss the details of the implementation
of the new VNA calibration algorithm described in [1]. Like
[7]–[10], this algorithm is based on orthogonal distance regres-
sion, and is a culmination of the algorithms developed in [3]
and [7]–[10]. Unlike its predecessors, this new algorithm takes
full advantage of the ability of orthogonal distance regression to
separate and treat errors in the measurements and standard def-
initions, and incorporates a mechanism for adding systematic
errors into its overall uncertainty estimates.
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Fig. 1. Two-tier on-wafer calibration problem (from [1]).

III. TWO-TIER CALIBRATION PROBLEM

Fig. 1 shows the basic second-tier on-wafer measurement
problem that we address with the new calibration algorithm.
The matrices and contain the scattering parameters of
the two microwave ground–signal–ground probe heads we wish
to characterize. (The matrices and would contain the
scattering parameters of the adapters if we were characterizing
a fixture.) The matrix contains the scattering parameters of
the on-wafer calibration standard contacted by the probes. The
elements of are the scattering parameters of the cascade of
the left probe head, calibration standard, and right probe head,
as measured by the network analyzer at the coaxial reference
planes indicated in this figure. Here, the prime indicates that

is a measured, rather than a calculated, quantity. The ob-
jective of the calibration is to determine the scattering-parameter
matrices and of two probe heads from measurements

of the probes and known on-wafer calibration standards.
In the multiline TRL calibration, the on-wafer standards con-

sist of a short “thru” line, a set of additional on-wafer transmis-
sion lines of differing lengths, and a symmetric “reflect” [12].
In other calibration methods, the lines and/or reflect may be re-
placed by a variety of previously characterized terminations or
other two-port calibration standards.

IV. CALIBRATION ALGORITHM

The orthogonal-distance-regression algorithm implemented
in ODRPACK [11] finds an optimal solution for of the equa-
tions

(1)

where the subscript corresponds to the th one of the “obser-
vations.” The are functions relating the measurements to
the unknown vector and the explanatory variables . and

are the errors we wish to minimize in and .
To solve the calibration problem of Fig. 1, we set elements

of the measurement vectors to the real and imaginary parts
of the elements of the measured scattering-parameter matrices

of the two probes and calibration standard. The vector
contains the unknowns we wish to determine. We assigned ele-
ments of to the real and imaginary parts of the elements of the

scattering-parameter matrices and of the probe heads
and, when appropriate, the effective dielectric constant of
the on-wafer transmission-line standards, the unknown reflec-
tion coefficient of the symmetric on-wafer reflect standards,
and the reflection and transmission coefficients of the reciprocal
adapter calibration standard (see the Appendix).

The vectors contain sets of “explanatory” variables for
each observation. We use them to describe measurements or
models defining the scattering parameters of calibration stan-
dards, setting elements of to the real and imaginary parts of
the elements of the scattering-parameter matrix of the cal-
ibration standard. This strategy allows the algorithm to accom-
modate imperfectly characterized calibration standards.

The optimal solution for is found by determining the vector
that minimizes

(2)

subject to the constraints in (1). In (2), the matrices
and are weights, ,

, the superscript indicates the
transpose, and

. . .

. . .

(3)

Finally, ODRPACK estimates , the covariance matrix corre-
sponding to the elements of the solution vector , from

(4)

where is the estimated residual variance. Here,
, the number of degrees of freedom, is the number of obser-

vations minus the number of parameters being estimated, and
the th element of the Jacobian matrix is equal to
evaluated at .

In our implementation of the on-wafer calibration algorithm,
we allow the user to specify uniform weights. We also allow
the user to set and equal to estimates of the inverse of
user-supplied block-diagonal covariance matrices and
describing the uncertainties in and . This improves the es-
timate of the unknowns in the vector over that obtained with
uniform weighting [11]. When the ’s are fixed, set to 0,
and are diagonal, minimizing (2) in this way corresponds to
“chi-square” fitting [13].

V. ALGORITHM PERFORMANCE—AN ON-WAFER TEST CASE

In [1], we used a Monte Carlo simulation of a second-tier
on-wafer TRL calibration to compare the performance of our
new orthogonal-distance-regression algorithm to the algorithm
of [2] as implemented in MultiCal. While neither algorithm
showed statistically significant bias in its solutions, we found
that our new algorithm outperformed the algorithm of [2] in the
presence of measurement errors. Fig. 2 illustrates this key result
of [1].
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Fig. 2. Relative performance of the two algorithms in a Monte Carlo
simulation. We compared the performance of the two algorithms with identical,
but noisy data sets.

To generate this figure, we first constructed a set of perfect
measurements for a second-tier on-wafer TRL calibration. We
added random Gaussian errors with a standard deviation of 0.01
and to the real and imaginary parts of the reflection and
transmission coefficients of the simulated measurements, re-
spectively. We then used the two algorithms to estimate the sim-
ulated values with the set of noisy measurements. Finally, we
compared the calibration parameters determined by the two al-
gorithms to their true values used in the simulation.

Fig. 2 plots the standard deviation of the errors in the magni-
tude of the first error box’s transmission coefficient that
we obtained with the two algorithms. The figure shows that,
while the two algorithms do equally good jobs of estimating so-
lutions at low levels of measurement error, the new algorithm
does a better job of estimating the true value of the transmission
coefficient of the error box in the presence of higher levels of
measurement error.

This figure also compares the average value of the standard
uncertainty estimated by the new algorithm in the experiment
(the dashed curve in the figure) to the actual standard deviation
of its results. The good agreement demonstrates the ability of
the new algorithm to estimate its own uncertainty.

Reference [1] statistically quantifies these and other related
results. In particular, it shows that we can state with great statis-
tical certainty that the new algorithm outperforms the algorithm
of [2], and that we can have confidence in the new algorithm’s
uncertainty estimates.

VI. ONE-TIER CALIBRATION PROBLEM

We use the 12-to-8-term reduction [14], [15] to solve one-tier
VNA calibration problems. That is, we use isolation and
switch-term measurements to first correct the raw VNA mea-
surements for the isolation and switch-term errors, and then use
orthogonal distance regression to solve for the remaining two
error boxes and that define the calibration problem.
The advantage of this approach is that only two new terms,
the real and imaginary parts of the ratio of the forward to the
reverse transmission coefficient of , are required to find a

solution [15]. This both increases the efficiency and robustness
of the search algorithm, and improves the reliability of the
algorithm’s uncertainty estimates.

There is a disadvantage to this approach: we are unable to
make use of repeated measurements of the isolation and switch
terms. However, the switch terms themselves depend only on
the instrumentation, not the calibration, calibration standards, or
standard definitions that we apply. They are also small and ex-
tremely stable. Thus, we lose little information by not including
repeated measurements of the switch terms.

Furthermore, even though the algorithm makes no use of re-
peated isolation and switch-term measurements, it can still pro-
vide good estimates of the uncertainty due to poorly character-
ized isolation or switch terms from the measurement residuals.
This is because errors in the isolation or switch terms mani-
fest themselves as a lack of fit of the isolation and switch-term
corrected measurements to the remaining eight-term calibration
error model, and are thus automatically included in the algo-
rithm’s uncertainty estimates. Thus, we felt that the advantages
of using the 12-to-8-term reduction to solve one-tier calibrations
outweighed its disadvantages.

VII. SEARCH STRATEGY

We have found that most calibration problems are readily
solved when accurate solution estimates are available as starting
points. However, any iterative search algorithm can have diffi-
culty finding solutions without good starting points, especially
as the number of parameters in the solution vector increases.
TRL calibrations are particularly challenging, as they require
solving for the effective dielectric constant and the reflec-
tion coefficient of the reflect standard. One-tier calibrations
and calibrations with DUTs also increase the number of un-
knowns, and can complicate the process of finding a solution
when accurate starting estimates are not available.

With these difficulties in mind, we developed an efficient and
robust solution strategy to handle poor starting estimates.

Our solution strategy is based on building up the complete
solution in small steps. For one-tier calibrations, we begin by
finding starting estimates for the ratio of the forward to the re-
verse transmission coefficient of from the most reliable
standard available, the thru line. If a thru line is not available
in the calibration, we use a reciprocal adapter; if neither a thru,
nor a reciprocal adapter is available, we use a line standard for
the estimate.

When the calibration must estimate the effective dielectric
constant of the transmission-line standards, the reflection
coefficient of a reflect standard, or the scattering parameters
of a reciprocal adapter, we first apply the orthogonal-distance-
regression algorithm to find approximate solutions for and

with these variables fixed at their estimates. We do this
because the estimates of , , and the scattering parameters
of any reciprocal adapters are usually much better known than
the elements of and . This greatly simplifies the job of
locating the global minimum.

We then use these approximate solutions for and
based on the fixed values of , , and the scattering
parameters of any reciprocal adapters as starting points for
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TABLE I
SOLUTION TIMES FOR A TYPICAL TRL CALIBRATION WITH DIFFERENT

SOLUTION STRATEGIES

an accurate solution of the calibration problem in which all
of the calibration parameters are allowed to vary. This usually
results in a faster and more robust solution than trying to solve
for all of the calibration parameters in one step. Of course,
if the calibration does not need to solve for , , or the
scattering parameters of a reciprocal adapter, we solve for
and directly.

If the algorithm does not converge properly or the residual
standard deviation exceeds a user-supplied maximum value, we
automatically invoke a robust search algorithm. In this event,
we repeat the entire process with 15 different starting values.
These starting values include three different transmission coef-
ficients of with magnitude near one spread over one-half
of the Smith chart, five different transmission coefficients of

with magnitude near one spread over the four quadrants of
the Smith chart, and small values of reflection coefficient. We
then pick the solution with the lowest overall residual standard
deviation. While this search is time consuming, it typically
only need be invoked at the first frequency point, whose solu-
tion then serves as a starting point for the ensuing frequency
point, and so on.

Once the calibration problem has been solved, we fix the cal-
ibration parameters and apply orthogonal distance regression to
solve for the scattering parameters of the DUT. Finally, as an
option, we allow a joint calibration/DUT solution. This option
allows additional information from transmissionless or recip-
rocal DUTs to be factored into the overall solution.

Table I summarizes how well our solution strategy functions.
The table gives overall solution times for a 200-frequency-point
200-MHz–110-GHz first-tier TRL calibration using eight line
standards, as solved on an 860-MHz Intel Pentium III2 pro-
cessor. We see that the shortest solution time of 26 s was ob-
tained using MultiCal solutions as starting points, as one would
expect.

The solution time increased to 38 s when we used the full
strategy outlined above, fixing both and to their esti-
mates during the first stage of the solution process. Attempting
to solve the entire calibration problem in one step resulted in the
longest solution time, 45 s. This was due at least in part to the
fact that the orthogonal-distance-regression algorithm did not
initially converge with this strategy, and the program was forced
to invoke the lengthier search to solve for the first frequency
point. Even so, in all three cases, the algorithm converged to the
same solution. Although heuristic, we have encountered few sit-
uations in which this robust search strategy failed.

2We use trade names only to completely explain the experimental conditions.
This does not constitute an endorsement by NIST or by the Physikalisch-Tech-
nische Bundesanstalt, Braunschweig, Germany. Other products may work as
well or better.

VIII. MEASUREMENT UNCERTAINTIES

One of the most important capabilities of our new algorithm is
its ability to determine uncertainties in the calibration and mea-
surements based on redundant data. We express these uncertain-
ties as covariance matrices. The diagonal elements of these co-
variance matrices correspond to the square of the standard un-
certainties of the elements of the solution vector , while the
off-diagonal elements of these covariance matrices correspond
to the covariances between the elements of .

We first calculate covariance matrices describing measure-
ment uncertainties in the real-imaginary coordinate system in
which we solve the problem. We do not calculate these covari-
ance matrices in a polar (magnitude-angle) coordinate system
due to the difficulties of expressing uncertainties in the magni-
tudes and angles of small vectors.

However, we do support, as a user option, an in-phase/quadra-
ture representation of the uncertainties that maintains most of
the advantages of the more traditional magnitude-angle repre-
sentation while avoiding the difficulty of expressing the uncer-
tainties of small vectors in a magnitude-angle representation. In
this in-phase/quadrature representation, we rotate the elements
of the covariance matrix associated with the complex vectors
forming our solution into a coordinate system aligned with the
direction of each of these vectors. Thus, the first component of
uncertainty in a vector in this in-phase/quadrature representa-
tion corresponds to the component of the vector’s uncertainty
in the direction of the vector itself, while the second compo-
nent of uncertainty corresponds to the uncertainty of the vector
in a direction in quadrature with (perpendicular to) the vector.
If the uncertainties are much smaller than the magnitude of the
vector, the in-phase uncertainty corresponds to the uncertainty
in the magnitude of the vector, while the quadrature uncertainty
corresponds to the uncertainty in the angle of the vector divided
by its magnitude.

A. Type-A Uncertainties Derived From Measurement
Residuals

We estimate type-A uncertainties in the solution from the de-
viations of the redundant measurements from the calibration
model (the measurement residuals) using (4). These statistically
derived uncertainties are often, but not always, random in na-
ture. Loosely speaking, the residuals quantify the magnitude of
the errors in the solution, the weights serve to determine their
relative distribution in the measurements, and the Jacobian maps
the measurement residuals into the uncertainties in the calibra-
tion solution and captures the correlations of the errors in that
solution.

Recall that we solve for the calibration solution, for the DUT
solution, and for the combined calibration and DUT solution
separately. We are thus able to determine separate covariance
matrices , , and from (4) describing
the respective uncertainties in each of these solutions. (In Sec-
tion VIII-D, we use these covariance matrices to estimate the
effective number of degrees of freedom in the solution.)

These covariance matrices estimate uncertainty in the solu-
tion due not only to random measurement error, but also to a
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number of other mechanisms that might ordinarily be consid-
ered to be systematic in nature. In fact, these covariance ma-
trices can account for any error that increases the measurement
residuals. That is, they will reflect any error that degrades the fit
of the data to the VNA calibration error model. Some examples
serve to illustrate this.

Probe-to-probe coupling in on-wafer calibrations depends
on a number of factors, including the distance between the
probes, and will change from measurement to measurement.
The 12-term calibration model we use, which assumes static
coupling, cannot correctly account for probe-to-probe cou-
pling. Thus, coupling in the measurements will give rise to
measurement residuals that will be accounted for in ,

, and .
Errors in the definition of the lengths of the open and short

standards used in a short–open–load–thru (SOLT) calibration
are typically considered systematic errors that must be imported
into the calibration. However, if we use a number of shorts and
opens with different errors in their length definitions, these dif-
ferences will manifest themselves as a lack of fit of the calibra-
tion data to the VNA calibration model, and increase the mea-
surement residuals. Here, again, the algorithm will automati-
cally detect and account for these errors in standard definitions.

Thus, we see that, in fact, the type-A uncertainties we de-
termined automatically account for a number of error mecha-
nisms that would normally be considered systematic in nature.
This means that only a relatively small number of additional
systematic type-B uncertainties need be imported into the error
analysis.

B. Systematic Type-B Uncertainties

We cannot, however, estimate all measurement uncertainties
from measurement residuals. For example, in TRL calibrations,
we calculate the characteristic impedance of the transmis-
sion-line standards from and a user-supplied capacitance
per unit length of line. Errors in the user-supplied capacitance
change the reference impedance of the calibration. However,
a calibration with a different reference impedance is still a
solution to the calibration problem so the error in reference
impedance does not manifest itself as a lack of fit of the
measurements to the calibration model. Since this reference
impedance error does not affect the measurement residuals,
this systematic error will not be accounted for in the type-A
uncertainties we considered above.

Consider also our previous SOLT example. If the offsets in
the definitions of the lengths of the opens or shorts were all
positive on one port and all negative on the other port, this would
result in a shift of the calibration reference plane. However, this
new calibration still corresponds to a solution of the calibration
problem with a shifted reference plane so, again, the systematic
error in the reference-plane position of the calibration does not
affect the measurement residuals.

In cases like these, where systematic errors in standard defi-
nitions do not increase the measurement residuals, we must find
another way to incorporate these errors into our uncertainty esti-
mates. To do this, we construct a covariance matrix from
simple electrical models to describe the systematic errors.

Fig. 3. Sketch of the error model describing the systematic uncertainties.

Our implementation of the algorithm supports several elec-
trical models defined by a single parameter that describe refer-
ence impedance, reference plane, and series inductance errors
that the user can easily “import” into the uncertainty analysis.
The algorithm also supports more general sets of systematic er-
rors defined by user-supplied covariance matrices describing the
error sources. Once the covariance matrices defining these error
sources have been defined, the algorithm translates them into
uncertainties in the results using Jacobian matrices.

We describe these systematic errors with an error-box
model that equally distributes errors on the two measurement
ports. We not only assume that the errors represented by the
error boxes are small so that second-order error terms can
be neglected, but that the error boxes are reciprocal, i.e., we
assume that the forward and reverse transmission coefficients
of the error boxes are equal. This is reasonable not only because
power-normalized scattering parameters describing typical
systematic errors corresponding to real reference impedance
transformations, reference plane transformations, and parasitic
lumped elements are reciprocal [12], but also because any error
that creates asymmetry in the forward and reverse transmission
coefficients would give rise to measurement residuals that
would be detected and included in our type-A uncertainties.

Fig. 3 sketches the error model we use to describe these im-
ported systematic errors. The components of the model labeled

, , and correspond, respectively, to the true scat-
tering parameters of the first error box, DUT, and second error
box. The components labeled , , , , , and

correspond to the error boxes describing the systematic er-
rors.

The measured scattering parameters of the first error box
in Fig. 3 correspond to the cascade of the systematic error ,
the true scattering parameters of the error box, and the sys-
tematic errors . Likewise, the measured scattering param-
eters of the second error box correspond to the cascade of
the systematic error , the true scattering parameters of
the error box, and the systematic errors . Finally, the mea-
sured scattering parameters of the DUT correspond to
the cascade of the systematic error , the true scattering pa-
rameters of the DUT, and the systematic errors .
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To add a systematic error to our uncertainty analysis, we
begin by writing down the scattering parameters , ,
and of the error box that models the source of
the error we wish to include. For example, to model an error
in a reference-plane transformation,
and , where is the error in the
reference-plane position in radians.

Next, we use a first-order error-propagation analysis to ex-
press and or , , , and depending
on the reference plane at which the systematic errors are located,
in terms of , , and . It is evident that, if the error
occurs in the first tier of a two-tier calibration (the two outer ref-
erence planes and of Fig. 3), and are

(5)

and

(6)

where we have deliberately reversed the indexes of and
in (6).

The indexes in (6) are reversed to account for the fact that port
1 of faces toward the analyzer, while port 1 of faces
away from the analyzer. However, if we wish to use a single
model to represent the errors on both sides of the DUT, port 1
of the model must always face toward the network analyzer and
port 2 of the model must always face away from the analyzer.
Thus, reversing the indexes in this way allows us to use a single
model and representation for the errors at the two ports in terms
of , , and , and simplifies the notation.

If the error occurs in a first-tier calibration or in the second
tier of a two-tier calibration (the two inner reference planes
and of Fig. 3), , , , and are given by

(7)

(8)

(9)

and

(10)

where again the indexes in (10) are intentionally reversed.
The negative signs in (8) and (9) ensure that the systematic er-

rors introduced into the scattering parameters of the DUT prop-
erly reflect the systematic errors in the error boxes that gave rise
to them. We can derive the form of (8) and (9) from the following
argument.

Imagine that there are no errors at the outer two reference
planes in the model of Fig. 3. The cascade matrices and

, where is the cascade matrix corresponding to the
scattering-parameter matrix , will then be equal to identity
matrices. In the absence of systematic errors at the two inner ref-

TABLE II
COVARIANCE MATRIX � OR � RELATING THE REAL AND IMAGINARY

ELEMENTS OF [S ] AND [S ] OR [S ] AND [S ] FOR A SYSTEMATIC

ERROR IN THE REFERENCE-PLANE POSITION. BLANK SPACES REPRESENT

2-BY-2 MATRICES FILLED WITH ZEROS. THE INDEXES P AND Q
CAN BE REPLACED BY EITHER A AND F OR B AND E

erence planes of Fig. 3, the cascade matrix corresponding
to the measurement can be written as

(11)

However, the addition of a systematic error at the inner ref-
erence planes of Fig. 3 does not change the measurement .
Thus, the cascade matrix corresponding to can also
be written as

(12)

Since both (11) and (12) must hold for any DUT, we see imme-
diately that and . Eliminating
second-order terms in , , and leads directly to
(8) and (9). This is convenient because once we have determined

, , and , we know not only and , but
also and .

While (5)–(10) describe the error boxes modeling systematic
errors at the outer and inner reference planes, they do not capture
the correlations between the elements of the error boxes or rep-
resent the errors and their correlations in a form convenient for
computing the propagation of the errors into the solution vector

. To circumvent this problem, we use (5)–(10) to aid in the con-
struction covariance matrices and to describe these
errors and correlations.

Table II tabulates the elements of these covariance matrices
corresponding to a systematic error in the reference-plane po-
sition at the first-tier reference planes and in Fig. 3 or the
second-tier reference planes and in Fig. 3. In the uncer-
tainty analysis, we treat the real and imaginary parts of each
complex quantity as two real numbers so and are
real 12-by-12 covariance matrices. The first row and column of
Table II indicate the associated variable in the covariance ma-
trix.

Recall that, in this case, and
. Each entry in Table II corresponds to a 2-by-2 matrix, and

blank spaces represent 2-by-2 matrices filled with zeros. Since
, any row or column associated with these

reflection coefficients are filled with zeros.
The symbol in Table II is defined by

(13)
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TABLE III
JACOBIAN MATRIX JJJ MAPPING THE � INTO �

TABLE IV
JACOBIAN MATRIX JJJ MAPPING THE � INTO �

where corresponds to the square of the standard uncertainty
in . The two 2-by-2 matrices on the diagonal of the co-
variance matrix , with equal to or , as appro-
priate, correspond to the standard uncertainties in the imaginary
part of , while the off-diagonal matrices in
describe the correlations between the imaginary part of
at reference planes and . The positive sign is used for pos-
itively correlated reference-plane-position shifts (i.e., the two
reference planes move toward and away from the analyzer to-
gether), the negative sign is used for negatively correlated refer-
ence-plane-position shifts (i.e., the two reference planes move
left and right together), and is set to zero for uncorrelated
reference-plane-position shifts.

We see from this analysis that the covariance matrices
and describing the sources of systematic error must be
constructed individually. For this reason, we have hard-coded
covariance matrices describing reference-plane position and ref-
erence-impedance errors, as well as systematic errors due to
series inductances at the measurement port, as often arises in
coaxial TRL calibrations. Reference [16] offers useful expla-
nations useful for constructing custom covariance matrices to
describe other systematic errors not already hard coded into the
algorithm.

After constructing and , we use closed-form Ja-
cobian matrices and derived from a first-order error
propagation analysis to translate the errors described in

and into a covariance matrix describing the un-
certainties in the solution vector via

(14)
Since the Jacobian matrices and map the errors de-
scribed in the 12-by-12 covariance matrices and
into the covariance matrix , which has the same dimen-
sion as the solution vector , and have 12 columns
and a number of rows equal to the dimension of the solution
vector . Once formed, the covariance matrix includes
the effects of the systematic errors on both the calibration coef-
ficients and scattering parameters of the DUT.

Tables III and IV give the Jacobians and that we
use. How we order the elements of , , and
is a matter of convention. The elements in the first row of the
tables refer to the ordering we used for and , the co-
variance matrices describing the circuit-level description of the
systematic errors. The elements of the first column of the tables
refer to the ordering we used for , the covariance ma-
trix describing the effect of the systematic errors on the solution
vector after they are mapped from and .

The function of and is to map the errors contained
in , , , , , and into . and

can be constructed by a simple first-order analysis in the
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errors contained in , , , , , and by
writing down the scattering parameters of , , and
(see Fig. 3) in terms of , , , , , , ,

, and . For example, to construct the first row of
in Table III, we write in terms of the reflection coefficient
of the cascade of and as

(15)

Thus, we see that a small error contributes an equal error to
so . A small error , on the other hand, con-

tributes an error to so .
Finally, a small error in contributes an error

to so .
Again, we treat the real and imaginary parts of each complex

vector in the analysis as two real quantities so each entry in the
tables actually corresponds to a 2-by-2 matrix of the form

(16)

where is the real part of the complex quantity and is its
imaginary part. The blank spaces in the tables represent 2-by-2
matrices filled with zeros.

Note that has a number of elements not found in .
This is because not only maps the errors captured in
and into the parts of related to the uncertainties
in the calibration coefficients, but also the errors captured in

and , which contribute to the uncertainty in the DUT.
Formulating the problem in this way is extremely convenient
for the user, who need only specify to translate all of the
errors captured in , , and and their correlations
into uncertainties and correlations in the entire solution vector,
including those related to the DUT.

C. Combined Uncertainty

The algorithm reports a combined standard uncertainty
described by the covariance matrix

. This covariance matrix describes both
the type-A and the type-B uncertainties and their correlations
in the combined calibration/DUT solution. The diagonal ele-
ments of contain the square of the standard
uncertainties of each of the measured calibration and DUT
parameters, which we can represent either as real-imaginary or
in-phase-quadrature pairs.

Fig. 4 plots the combined standard uncertainty
of the quadrature component of the

transmission coefficient of a DUT calibrated with a
TRL calibration obtained from the in-phase/quadrature
representation of as a solid line. This
figure also plots the standard uncertainty obtained from

and the standard uncertainty obtained from
.

Fig. 4. Components of quadrature uncertainty in S for a DUT as a function
of frequency. The quadrature uncertainty is in a direction perpendicular to the
direction of S .

D. Expanded Uncertainty

We determine expanded uncertainties , defining the
95% confidence intervals associated with each component of
the solution, from a set of “one-at-a-time coverage factors”

. Multiplying the standard uncertainty
by the coverage factor gives the expanded uncertainty

(see Fig. 4). We have a 95% confidence that the true
value of a solution parameter is in the interval defined by the
reported value [16].

We calculate separately for each component of the
solution vector from the effective number of degrees of
freedom associated with that element of the solution using
the Welch–Satterthwaite formula [16]. For the calibration
parameters, we estimate as

(17)

For the DUTs, we estimate as

(18)

where we estimate as when
is positive, and as zero otherwise. This

is because when the true value of the uncertainty due to the
calibration is small compared to the true value of the uncer-
tainty due to the DUT, there is a nonnegligible probability
that . In such cases, without additional
information, we set .

We determine the number of degrees of freedom and
in (17) and (18) as the number of measured real values

in the calibration and DUT problems minus the number of real
values we solve for in those problems after accounting for any
deficiencies in the rank of the solution. By default, we set the
number of degrees of freedom associated with the sys-
tematic errors to infinity, although the user may override this
default.
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Fig. 5. Actual and predicted standard deviations of the calibration parameter
jS j as a function of the user-supplied estimate of � used to construct�
with s = � = 0:01.

Finally, we determine from , where rep-
resents the student’s -distribution [16]. Fig. 4 plots

as a dashed line. Since all of the degrees
of freedom were at least 40 for the calibration problem of Fig. 4,

in Fig. 4.

E. Re-Weighting

As we explained earlier, the algorithm can make use of user-
supplied block-diagonal covariance matrices describing the
errors in the raw network-analyzer measurements and de-
scribing the errors in the calibration-standard definitions. The
algorithm uses and to determine the relative weights
and that it uses to find solutions, and to estimate the uncer-
tainties in its results. In this section, we will discuss the effect
of the user-supplied estimates in on the solution and the un-
certainty the algorithm predicts for that solution, as well as a
strategy for verifying and refining user-supplied estimates.

In the on-wafer test case we discussed in Section V, we
added error with a standard deviation of 0.01 into the
simulated reflection-coefficient measurements and standard
deviation of 0.03 into the simulated transmission-coef-
ficient measurements. To illustrate ideas, we constructed a
diagonal matrix from user-supplied estimates and

of and . Fig. 5 illustrates the effect of the user’s
estimates on the solution for the calibration parameter

and the uncertainty in the algorithm predicts
with .

The solid line in Fig. 5 shows the standard deviation of the
error in the calibration parameter . This figure shows that
the algorithm’s solution accuracy is a very weak function of the
user-supplied estimate used to construct .

The dashed line in Fig. 5 shows the standard uncertainty of
estimated by the algorithm. This figure shows that the

algorithm’s estimate of its own uncertainty improves measur-
ably when the user-supplied estimate approaches the actual
value of marked by the arrow in the figure. This
demonstrates that there is a small, but tangible, advantage to be
gained in the accuracy of the algorithms uncertainty predictions
by accurately estimating and .

The covariance matrix can usually be estimated from di-
mensional tolerances, electrical models, or other physical pa-
rameters of the calibration standards. However, the elements of
the covariance matrix that describes the uncertainty in the
raw network-analyzer measurements will vary from instrument
to instrument and measurement setup to measurement setup.

We developed a verification and refinement procedure to ad-
dress this problem based on a comparison of the measurement
residuals detected by the algorithm with the user-supplied esti-
mates of those residuals. To perform the comparison, the algo-
rithm determines the standard deviations and of the el-
ements of the residuals of the solution associated with the raw
measured reflection and transmission coefficients based on the
user supplied estimates of and of and . These
standard deviations and reflect the actual lack-of-fit
of the raw measurements to the calibration model based on the
user’s initial estimates and . This allows the user to
compare the user-defined estimates and to the actual
measurement residuals, refine the estimates and , and
resolve the problem with a set of optimized covariance matrices

and and weights that better correspond to the actual in-
strument and measurement setup.

Our on-wafer test case illustrates that by using uniform
weighting for our on-wafer test case, the
standard deviation of the residuals and associated
with the transmission and reflection coefficients were 0.0277
and 0.0088, respectively. These estimates are quite close to
the actual standard deviations and
of the measurement error we added into these transmission
measurements in the Monte Carlo simulation (see Fig. 5). In
fact, Fig. 5 shows that results based on weights derived from
setting are nearly identical to those obtained
based on the actual value of , and demonstrate
nicely the utility of this re-weighting scheme.

Although our first cycle of refinement of the estimates of
and were quite good, in some situations, it might be pos-
sible to iterate on and to improve on these estimates.
We tested this by adjusting and to 0.0277 and 0.0088,
and recalculating the residuals. We then obtained similar esti-
mates and for and .
This indicates to the user that no further improvement is to be
gained in this example with more refinement iterations.

IX. CONCLUSION

We have presented an iterative algorithm based on orthog-
onal distance regression for performing VNA calibrations. The
algorithm allows a flexible “mix and match” approach to VNA
calibrations that takes into account the relative accuracy in the
calibration standards and the relative accuracy in the measure-
ments to arrive at an optimal calibration solution.

The algorithm is not intended to replace traditional error
analyses based on a history of check-standard measurements
and the application of standard statistical methods to separately
determine uncertainty due to repeatability and reproducibility.
These more standard approaches will most likely always result
in the most reliable uncertainty estimates possible. However,
this algorithm offers an easy-to-implement alternative that
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automatically estimates the uncertainty in the calibration due to
most error sources from measurement residuals, and allows any
remaining systematic errors to be readily added to the overall
uncertainty estimate.

APPENDIX

SUPPORTED CALIBRATION STANDARDS

Our implementation supports the wide variety of calibration
standards and DUTs listed below. As long as there are enough
calibration standards with which to solve the problem, any of
the calibration standards can be “mixed and matched” with
any other calibration standards, allowing great flexibility in the
choice of calibration strategy. The weights are based on the
estimated accuracy of the measurements, while the weights
are used to account for differences in the relative accuracy of
the various standards in any given calibration.

A. Thru Calibration Standard

The thru calibration standard is realized by forming a zero-
length connection at the calibration reference plane. The scat-
tering parameters of the thru standard are, by definition,

and . Translating the reference plane
in the calibration usually requires defining the thru standard as
a transmission line of either positive or negative length.

B. Transmission-Line Calibration Standard

The characteristic impedance of the transmission-line stan-
dard supported by the algorithm is determined from a user-sup-
plied capacitance per unit length, and is assumed to be con-
stant. This is explained in [17] and [18]. The scattering param-
eters of the transmission-line standard are calculated with re-
spect to a reference impedance of 50 . As a result, the refer-
ence impedance of calibrations using these line standards is set
to 50 .

The algorithm also allows the reference impedance of the
scattering parameters of the line standards to be set to the char-
acteristic impedance of the transmission-line standard to sup-
port calibrations with reference impedance equal to the charac-
teristic impedance of the line.

C. Reflect Calibration Standard

The reflect calibration standard supported by the algorithm
has equal, but unknown reflection coefficients at each port, and
no transmission. Adding a reflect standard to a calibration re-
quires adding its reflection coefficient to the solution vector.
The algorithm thus supports only a single reflect in each calibra-
tion, although it may be measured many times. While the reflect
is essential for setting the reference plane in TRL calibrations,
the algorithm can support the reflect standard in any calibration.

D. Load Calibration Standard

The algorithm supports a load calibration standard with
known, but possibly different reflection coefficients at each
port, and no transmission between its ports. This standard is
used for adding shorts, opens, and resistors in SOLT calibra-
tions and adding the match standard in line–reflect–match
(LRM) calibrations. The load calibration standard with ap-

Fig. 6. Model used to describe the impedance of load calibration standards.

propriate weighting can also be used in TRL calibrations to
allow resistors to more accurately set the calibrations reference
impedance at low frequencies or even to augment the TRL
calibration with well-characterized shorts and opens over part
or all of the frequency band.

The reflection coefficients of the load can be defined from
data in a file or with the analytic model of Fig. 6. The transmis-
sion line is defined by a delay , a resistance per unit length

, and a real characteristic impedance . For consistency
with common industrial practice, we use a third-order Taylor-se-
ries expansion to describe the values of the lumped elements in
Fig. 6. This analytical model is a superset of the most common
coaxial standard definitions and of the on-wafer load definitions
described in [19].

E. Reciprocal-Adapter Calibration Standard

The reciprocal-adapter calibration standard supported by the
algorithm has unknown reflection and transmission coefficients.
However, must equal . This standard is useful when cali-
brating with an adapter matching different transmission media at
its two ports. The algorithm determines the unknown scattering
parameters of the reciprocal adapter during the calibration pro-
cedure.

Adding a reciprocal-adapter standard to a calibration requires
adding its two reflection coefficients and single transmission
coefficient to the solution vector. The algorithm thus supports
only a single reciprocal-adapter standard in each calibration, al-
though it may be measured many times.

F. Attenuator Calibration Standard

All of the scattering parameters of the attenuator must be
known, and its forward and reverse transmission coefficients
must be equal. The scattering parameters of the attenuator can
be defined from data in a file or by the transmission-line model
of Fig. 6 defined by a delay , a resistance per unit length ,
and a real characteristic impedance .

G. DUTs

To keep the number of unknowns in the solution vector to an
absolute minimum, the algorithm supports three types of DUTs,
i.e., DUTs with unknown reflection coefficients and no trans-
mission, reciprocal DUTs with unknown reflection coefficients
and unknown, but equal forward and reverse transmission co-
efficients, and DUTs with unknown reflection and transmission
coefficients.

SOFTWARE

The StatistiCAL software package implementing the method
described here can be downloaded online.3

3[Online]. Available: http://www.boulder.nist.gov/dylan/
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